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1. Introduction

The AdS/CFT correspondence [1] provided the first concrete example of a large-N dual-

ity [2] between a gauge theory and a string theory in four dimensions. It is important

to fully understand how string theory emerges here from the field theory since this might

later provide methods applicable to other gauge theories. The basic example is the rela-

tion between large-N , N = 4 super Yang-Mills (SYM) and IIB strings in AdS5 × S5 [1].

In that case it is possible to see how certain simple string states actually appear as field

theory operators [3, 4] under the duality map. An important role is played, in particular,

by more general multi-spin rotating string solutions on S5 introduced in [5]. The field

theory description of such strings is in terms of semiclassical states of spin chains. The

spin chain picture of the corresponding scalar field theory operators and their anomalous

dimensions was found in [6], and the leading-order spin chain states corresponding to the
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2-spin rotating strings were found in [7]. The semi-classical nature of these states was

emphasized in [8, 9] where also a direct relation between the two low-energy effective field

theory systems was described.

While the integrability of the classical string sigma model implies a general descrip-

tion of the (“finite-gap”) classical solutions in terms of solutions of certain integral equa-

tions [10], it is still important to find explicitly more generic yet simple string solutions

and identify their corresponding duals. In [11, 12] a generalized ansatz was proposed which

reduces the problem of finding a large class of solutions to that of solving an integrable

one-dimensional system – Neumann system, describing an oscillator on a sphere. A partic-

ular reduction of the Neumann system leads to the so called Neumann-Rosochatius (NR)

system which describes a particle on a sphere subject to a sum of r2 and 1
r2 potentials.

This is again a well-known integrable system whose integrals of motion and solutions can

be found rather explicitly [13, 14]. The corresponding semiclassical solutions correspond,

in particular, to folded, bended, wound rigid rotating strings on S5. One arrives at the

NR action by choosing the conformal gauge and assuming a particular ansatz for string

coordinates (“NR-ansatz”).

However, some other important string configurations such as strings with spikes [15, 16]

and (bound states of) giant magnons [17 – 19] (see also [20, 21]) were not found using an

NR-type system. They were first obtained using the Nambu-Goto action in the static-type

gauge.1

Below we shall show that if one starts with the conformal gauge, both the spiky strings

and the giant magnons can be described by a generalization of the NR ansatz of [12]. In

this way it is possible to see that, in fact, the giant magnon solutions (with additional

spins) are a particular limit of the spiky solutions (the latter can, in turn, be viewed as

superpositions of giant magnons). However, this is an important limit since the solutions

simplify substantially when one of the three S5 momenta is sent to infinity.

The paper is organized as follows. In section 2 we shall introduce a generalized NR

ansatz that describes solutions with spikes and 3 angular momenta on S5. Then in sections

3 and 4 we shall describe solutions with two and three non-zero angular momenta. In

particular, we shall explicitly present a generalization of the giant magnon which carries

two additional angular momenta and discuss the interpretation of this new solution. In

section 5 we shall consider in detail the dual spin chain description of the corresponding

gauge theory states. Some conclusions will be presented in section 6.

2. Spiky strings and NR model

We want to generalize the spiky solutions on S5 to add more rotations and also make

contact with giant magnons. The spiky solutions were originally constructed in [15] as

describing strings rotating in AdS5 but here we are interested in generalizing their S5

analog considered previously in [16]. The aim is to find them as solutions of an NR-type

ansatz similar to the one in [11, 12].

1Conformal gauge was used also in [19, 20]; their solution for a giant magnon with spin is equivalent to

the one discussed below.

– 2 –



J
H
E
P
1
0
(
2
0
0
6
)
0
0
2

Let us start with the flat space string-with-spikes solution [22, 15] which is easily

written in conformal gauge. If the flat metric on Rt ×R2 is

ds2 = −dt2 + dXdX̄ (2.1)

then the spiky solution is (n is the number of spikes):

t = 2(n− 1)τ , X = ei(n−1)(τ+σ) + (n− 1)ei(τ−σ) . (2.2)

Introducing the notation:

ω = 2
n− 1

n
, ξ = σ +

n− 2

n
τ , (2.3)

we can write

X =
[
ei(n−1)ξ + (n− 1)e−iξ

]
eiωτ = x(ξ) eiωτ . (2.4)

This looks similar to the ansatz in [12] with spatial dependence of the “radial” direction x

extended to dependence on a linear combination of σ and τ .

2.1 Generalized NR ansatz

Let us now consider a string moving on an odd-dimensional sphere using conformal gauge.

Then the metric is (in the S5 case of interest a = 1, 2, 3)

ds2 = −dt2 +
∑

a

dXadX̄a,
∑

a

|Xa|2 = 1 , (2.5)

so that the string Lagrangian becomes

L = −(∂τ t)
2 + (∂σt)

2 +
∑

a

[
∂τXa∂τ X̄a − ∂σXa∂σX̄a

]
− Λ

(∑

a

XaX̄a − 1

)
. (2.6)

whereas the action is:

S =
T

2

∫
L (2.7)

According to the AdS/CFT correspondence, the string tension T is a function of the ’t

Hooft coupling λ of the dual gauge theory: T =
√
λ

2π .

The equation of motion for t is satisfied by t = κτ . The equation of motion for Xa is

−∂2
τXa + ∂2

σXa − ΛXa = 0 (2.8)

Motivated by the above remark we consider the following generalization of the NR ansatz

in [12]:

Xa = xa(ξ) e
iωaτ , ξ ≡ ασ + βτ , (2.9)

where xa = rae
iµa are in general complex and the periodicity in σ translates into the

condition

xa(ξ + 2πα) = xa(ξ) . (2.10)
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Variations of this ansatz describe also the spinning rigid strings [11] and pulsating [23]

strings [12, 24].2

The conformal constraints read

∑

a

[
|∂τXa|2 + |∂σXa|2

]
= κ2 ,

∑

a

[
∂τXa∂σX̄a + ∂τ X̄a∂σXa

]
= 0 . (2.11)

We have

∂τXa = (βx′a + iωaxa)e
iωaτ , ∂σXa = αx′ae

iωaτ , (2.12)

where primes denote derivatives with respect to ξ. The equations of motion become

(α2 − β2)x′′a − 2iβωax
′
a + ω2

axa − Λxa = 0 , (2.13)

which follow from the following Lagrangian for xa:

L =
∑

a

[(
α2 − β2

)
x′ax̄

′
a + iβωa(x

′
ax̄a − x̄′axa)− ω2

axax̄a
]

+ Λ

(∑

a

xax̄a − 1

)
(2.14)

Except for the term proportional to β, this Lagrangian is that of the Neumann system.

It describes the motion of a particle on a sphere under a quadratic potential and is inte-

grable [13, 14]. The term proportional to β can be described as a magnetic field and, as we

shall see below, does not modify the radial (NR) equations. Pictorially, a particle would

like to oscillate as in the usual NR system but the magnetic field bends the trajectory

giving rise to arcs. Since the form of the trajectory of this fictitious particle represents

the shape of the string, those are the arcs between the spikes in the spiky string, and, in

particular, the single arc of the giant magnon.

The Hamiltonian corresponding to (2.14) is (assuming
∑

a xax̄a = 1)

H =
∑

a

[(
α2 − β2

)
x′ax̄

′
a + ω2

axax̄a
]
. (2.15)

Defining (no sum over a)3

Ξa = i(x′ax̄a − x̄′axa) , (2.16)

we can rewrite the constraints as:

(α2 − β2)
∑

a

x′ax̄
′
a +

∑

a

ω2
axax̄a = κ2 , (2.17)

α2 − β2

2β

∑

a

ωa Ξa +
∑

a

ω2
axax̄a = κ2 . (2.18)

2More generally, one may consider the ansatz Xa = xa(ξ) eiωaτ+imaσ. Then pulsating string case

corresponds to α = 0, i.e. xa(ξ)→ xa(τ ). For non-zero α the additional windings ma can be set to zero as

they can be absorbed into the phase of xa.
3Notice that in this paper we write all summations explicitely.
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The first one is conserved since it is related to the Hamiltonian. The second one is conserved

if we use the equations of motion, implying, in particular, that

(α2 − β2) Ξ′a = −2βωa(xax̄a)
′ . (2.19)

This means that we have just to fix conserved quantities to satisfy the constraints.

Let us now use the following “polar” parameterization of xa

xa(ξ) = ra(ξ) e
iµa(ξ) , (2.20)

where ra are real. Then

|x′a|2 = r′a
2 + r2

aµ
′
a

2 , (2.21)

Ξa = −2r2
aµ
′
a . (2.22)

The Lagrangian becomes:

L =
∑

a

[
(α2−β2)r′a

2+(α2−β2)r2
a

(
µ′a−

βωa
α2 − β2

)2

− α2

α2 − β2
ω2
ar

2
a

]
+Λ

(∑

a

r2
a−1

)
(2.23)

The equations of motion for µa are easily integrated, giving:

µ′a =
1

α2 − β2

[
Ca
r2
a

+ βωa

]
, (2.24)

where Ca are constants of motion. Using this in the equations of motion for ra we get

(α2 − β2)r′′a −
C2
a

(α2 − β2)

1

r3
a

+
α2

(α2 − β2)
ω2
ara − Λra = 0 , (2.25)

which can be derived from the Lagrangian:

L =
∑

a

[
(α2 − β2)r′a

2 − 1

α2 − β2

C2
a

r2
a

− α2

α2 − β2
ω2
ar

2
a

]
+ Λ

(∑

a

r2
a − 1

)
, (2.26)

with the corresponding Hamiltonian being

H =
∑

a

[
(α2 − β2)r′a

2 +
1

α2 − β2

C2
a

r2
a

+
α2

α2 − β2
ω2
ar

2
a

]
. (2.27)

The constraints are satisfied if
∑

a

ωaCa + βκ2 = 0 , H =
α2 + β2

α2 − β2
κ2 . (2.28)

The periodicity conditions read:

ra(ξ + 2πα) = ra(ξ) , µa(ξ + 2πα) = µa(ξ) + 2πna , (2.29)

where na are integer winding numers; the second condition implies

Ca
2π

∫ 2πα

0

dξ

r2
a

= (α2 − β2)na − αβωa . (2.30)

The Lagrangian (2.26) describes the standard NR integrable system. Thus the general

solution for our ansatz can be constructed in terms of the usual solutions of the NR system.

There are five independent integrals of motion which reduce the equations to a system of

first-order equations that can be directly integrated [11]. In the next subsection, we shall

present a direct derivation of these integrals of motion for our particular case.
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2.2 Conserved quantities

Let us start with the Lagrangian (2.14) and define the momenta as:

pa =
∂L
∂x̄a

= (α2 − β2)x′a − iβωaxa . (2.31)

Then

p′a = iβωax
′
a − ω2

axa − Λxa , (2.32)

which implies

(x̄bpa − xap̄b)′ =
iβ

α2 − β2
(ωa − ωb)(x̄bpa − xap̄b) +

α2

α2 − β2
(ω2
b − ω2

a)xax̄b (2.33)

From here we obtain

∂ξ
∑

b6=a

1

ω2
b − ω2

a

|x̄bpa − xap̄b|2 = α2(xax̄a)
′ (2.34)

which implies that the quantities

Fa = α2xax̄a +
∑

b6=a

|x̄bpa − xap̄b|2
ω2
a − ω2

b

(2.35)

are conserved. They are not all independent since
∑

a Fa = α2. Expressed in terms of the

radii ra they read:

Fa = α2r2
a + (α2 − β2)2

∑

b6=a

(rbr
′
a − rar′b)2

ω2
a − ω2

b

+
∑

b6=a

1

ω2
a − ω2

b

(
Carb
ra

+
Cbra
rb

)2

(2.36)

Notice, in particular, from the last term, that if a certain solution reaches a point where

some ra = 0 then we should have the corresponding Ca = 0. Later we are going to find

a solution which reaches the point (r1, r2, r3) = (1, 0, 0), where r′a = 0. It then follows

immediately that C2,3 = 0 and F1 = α2, F2,3 = 0.

We now have three conserved quantities Ca and another two among the Fa since only

two Fa are independent. It is important to write the Hamiltonian in terms of the conserved

quantities. We get after some simple algebra:

H =
1

α2 − β2

[∑

a

(
ω2
aFa + 2βωaCa + 2C2

a

)
−
(∑

a

Ca

)2]
. (2.37)

The conformal constraints imply a closely related expression

(α2 + β2)κ2 =
∑

a

(ω2
aFa + C2

a)−
∑

a6=b
CaCb . (2.38)

Note that the characteristic frequencies of the motion are the derivatives of the Hamiltonian

with respect to the conserved momenta. Therefore, we can directly compute them from

the above expression.
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2.3 Angular momenta

The original lagrangian (2.6) is invariant under SO(6) rotations. We can define the conju-

gate momenta to X̄a as Πa = Ẋa and then for the (complex) angular momentum compo-

nents we get (and similar expressions for their complex conjugate components)

Jab̄ = T

∫
dσ (XaΠb̄ −Xb̄Πa) , (2.39)

Jab = T

∫
dσ (XaΠb −XbΠa) , (2.40)

where T =
√
λ

2π is string tension which appears in front of the string action. Using our

ansatz for Xa we get

Jab̄ = Tei(ωa−ωb)τ
∫
dξ

α

[
β(xax̄

′
b − x̄bx′a)− i(ωa + ωb)xax̄b

]
, (2.41)

Jab = Tei(ωa+ωb)τ

∫
dξ

α

[
β(xax

′
b − xbx′a)− i(ωb − ωa)xaxb

]
. (2.42)

These must be time-independent quantities. However, the time dependence appears not

to cancel except for Jaā (assuming all frequences ωa are different). This means that the

coefficients multiplying the time-dependent exponential factors should actually vanish. As

a result, only the diagonal (Cartan) components of the angular momentum tensor may

be non-zero for the solutions described by the NR ansatz (the same argument was given

in [11])

Ja ≡ Jaā = T

∫
dξ

(
β

α

Ca
α2 − β2

+
αωa

α2 − β2
r2
a

)
. (2.43)

Here we have used that xa = rae
iµa as well as the equations of motion for µa. If we further

notice that the energy of the string is given by

E = T
κ

α

∫
dξ (2.44)

we obtain a relation
α2 + β

∑
a
Ca
ωa

α2 − β2

E

κ
=
∑

a

Ja
ωa

. (2.45)

Finally, let us comment on the limits of the integrals over ξ. For standard closed strings

with 0 ≤ σ ≤ 2π we have 0 ≤ ξ ≤ 2πα. However, for strings with infinite energy and

momenta with E − J fixed as in [17] one has κ→∞ and then it is natural to rescale ξ so

that it takes values on an infinite line; equivalently, in this case we may keep κ finite (or

set κ = 1) while assuming that −∞ ≤ ξ ≤ ∞.

3. A solution with two angular momenta

A giant magnon solution with one infinite and one finite angular momentum on S 3 was

found in [19 – 21]. Here we shall reproduce it using our NR ansatz. We shall use the

expressions of the previous section (with a = 1, 2) but set

α = 1

– 7 –



J
H
E
P
1
0
(
2
0
0
6
)
0
0
2

to simplify the notation. We have the constraints

ω1C1 + ω2C2 + βκ2 = 0, H =
1 + β2

1− β2
κ2 . (3.1)

Using that H is conserved and that here r2
1 + r2

2 = 1 we immediately find the solution. We

get

H = (1− β2)
r′1

2

1− r2
1

+
1

1− β2

(
C2

1

r2
1

+
C2

2

1− r2
1

)
+
ω2

1 − ω2
2

1− β2
r2

1 +
ω2

2

1− β2
(3.2)

From here (and the relation H = 1+β2

1−β2κ
2) we obtain

(1− β2)2r′1
2 =

1

r2
1

[
((1+ β2)κ2 − ω2

2)r2
1(1− r2

1)− C2
1 + (C2

1 − C2
2)r2

1 − (ω2
1 − ω2

2)r4
1(1− r2

1)
]

The right hand side has three zeros which correspond to turning points where r ′1 = 0. We

want one of them to be r1 = 1 so that the string extends to the equator. Replacing r1

by 1 in the right hand side we get zero only if C2 = 0, so this determines this constant of

motion. The equation then simplifies to:

(1− β2)2r′1
2 =

1− r2
1

r2
1

[
((1 + β2)κ2 − ω2

2)r2
1 − C2

1 − (ω2
1 − ω2

2)r4
1

]
(3.3)

However, we still get two zeros. It turns out that one needs r1 = 1 to be a double zero.

Replacing r1 in the right hand side we get (1 + β2)κ2 = ω2
1 +C2

1 and using that C2 = 0 we

get β = −ω1C1

κ2 which then implies κ4 +ω2
1C

2
1 = ω2

1κ
2 +C2

1κ
2. Solving for κ we get4 κ = ω1

or κ = C1. We will see later that the first choice κ = ω1 is the required one to get a giant

magnon. The equation for r1 is then further simplified to:

(1− β2)2r′1
2 =

(1− r2
1)2

r2
1

(ω2
1 − ω2

2)(r2
1 − r̄2

1) , (3.4)

where

r̄1 =
C1√
ω2

1 − ω2
2

(3.5)

is the other turning point that determines the extension of the string. Equivalently, this

equation may be written as

u′ =
2

1− β2
(1− u)

√
u− ū

√
ω2

1 − ω2
2 , u ≡ r2

1 , ū ≡ r̄2
1 . (3.6)

The conserved charges are:

E = κT

∫
dξ (3.7)

J1 =
βC1

1− β2
T

∫
dξ +

ω1

1− β2
T

∫
udξ (3.8)

J2 =
ω2

1− β2
T

∫
(1− u)dξ . (3.9)

4We assume that the sign choices are such that the energy and the spins are positive.
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The angular extension of the string is

µ̂1 =

∫
µ′1 dξ =

C1

1− β2

∫
dξ

u
+

βω1

1− β2

∫
dξ (3.10)

A simple computation using that βω1 = −C1ω
2
1/κ

2 = −C1 gives a finite result. This

justifies the choice κ = ω1 in the previous equation for κ. The result is

µ̂1 =
2C1√

ū
√
ω2

1 − ω2
2

arccos
√
ū = 2 arccos

√
ū . (3.11)

The angular momenta can be computed using that
∫

(1− u)dξ = 2

∫ 1

ū

1− u
u′

du = 2
1− β2

√
ω2

1 − ω2
2

√
1− ū (3.12)

The factor of two is because the integral between ū and 1 is only half of the string. We

obtain:

J1 =
βC1 + ω1

1− β2

E

κ
− 2ω1 T√

ω2
1 − ω2

2

√
1− ū = E − 2ω1 T√

ω2
1 − ω2

2

√
1− ū , (3.13)

J2 =
2ω2 T√
ω2

1 − ω2
2

√
1− ū . (3.14)

where we used that ω1 = κ and βω1 = −C1. We can write the charges in terms of the

angle µ̂1 and an auxiliary angle γ defined by ω2 = κ sin γ. Observing that

√
1− ū = sin

µ̂1

2
,
√
ω2

1 − ω2
2 = κ cos γ , (3.15)

we get

∆ ≡ E − J1 = 2T
sin µ̂1

2

cos γ
, J2 = 2T sin

µ̂1

2
tan γ . (3.16)

Then

∆2 = J2
2 + 4T 2 sin2 µ̂1

2
. (3.17)

Finally, using that the string tension is T =
√
λ

2π we arrive at:

∆ =

√
J2

2 +
λ

π2
sin2 µ̂1

2
, (3.18)

which is the same energy relation as in [19] after we identify µ̂1 with the giant magnon

momentum p as in [17]. Notice also that using C2,3 = 0 (and J3 = 0) we get from (2.45):

E = J1 +
κ

ω2
J2 , i.e. ∆ = E − J1 =

J2

sin γ
, (3.19)

which is consistent with (3.16).

It is interesting to compute the NR integrals of motion Fa correspondng to this giant

magnon solution. Using eq. (2.36) at the point r1 = 1, r2 = r3 = 0, r′a = 0, we get simply:

F1 = 1, F2 = F3 = 0 . (3.20)

A simple check is that eq. (2.38) reduces to the relation (1 + β2)κ2 = ω2
1 + C2

1 which we

found above.
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4. A solution with three angular momenta

Here we shall find a new giant magnon solution with two extra angular momenta.

4.1 Form of the solution

To get a solution with three non-zero angular momenta we put all ωa 6= 0 and change from

the three constrained radial variables ra to two unconstrained ones ζ± (as is standard when

solving the NR system [14, 11]):

3∑

a=1

r2
a

ζ − ω2
a

=
(ζ − ζ+)(ζ − ζ−)∏3

a=1(ζ − ω2
a)

. (4.1)

ζ± are the roots of the quadratic equation obtained by taking common denominator on

the left hand side and equating the numerator to zero. The two roots are such that

ω2
3 < ζ− < ω2

2 < ζ+ < ω2
1. They satisfy:

ζ+ + ζ− =
∑

a

ω2
a −

∑

a

ω2
ar

2
a, ζ+ζ− =

∏

a

ω2
a ×

∑

b

r2
b

ω2
b

, (4.2)

as follows from equating the left and right hand side of eq. (4.1). We can invert this

transformation to get

r2
a =

(ζ+ − ω2
a)(ζ− − ω2

a)∏
b6=a(ω

2
a − ω2

b )
(4.3)

A straightforward computation then gives the Lagrangian in terms of ζ± (again we set

α = 1):

L =
1

4
(1− β2)(ζ+ − ζ−)

(
ζ ′−

2

∏
a(ζ− − ω2

a)
− ζ ′+

2

∏
a(ζ+ − ω2

a)

)

− 1

(1− β2)

1

(ζ+ − ζ−)


∑

a

∏

b6=a
(ω2
a − ω2

b )

[
C2
a

ζ− − ω2
a

− C2
a

ζ+ − ω2
a

]


− 1

1− β2

(∑

a

ω2
a − (ζ+ + ζ−)

)
(4.4)

and the Hamiltonian

Hζ =
1

(1− β2)(ζ+ − ζ−)

{
H̃(p−, ζ−)− H̃(p+, ζ+)

}
, (4.5)

H̃(p, ζ) =
∏

a

(ζ − ω2
a) p

2 +
∑

a

C2
a

∏
b6=a(ω

2
a − ω2

b )

ζ − ω2
a

+
∑

a

ω2
a ζ − ζ2 . (4.6)

One way to study this system is to use the Hamilton-Jacobi method which requires finding

a function W(ζ+, ζ−) such that

Hζ

(
p± =

∂W
∂ζ±

, ζ±

)
= E . (4.7)
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If a solution of the form W = W+(ζ+) +W−(ζ−) exists we say that the variables separate

and the system is integrable in these coordinates. Trying such a solution in our case we

obtain that, in fact, W± are the same function obtained from integrating the equation

(
∂W

∂ζ

)2

=

{
V −∑a

∏
b6=a(ω

2
a − ω2

b )
C2
a

ζ−ω2
a

+
[
κ2(1 + β2)−∑a ω

2
a

]
ζ − ζ2

}

∏
a(ζ − ω2

a)
(4.8)

where V is a constant of motion and we used the relation E = 1+β2

1−β2κ
2. The solution of the

Hamilton-Jacobi equation is then

W(ζ±, V, E) = W (ζ+, V, E) +W (ζ−, V, E) . (4.9)

The equations of motion reduce to

∂W (ζ+, V, E)

∂V
+
∂W (ζ−, V, E)

∂V
= U , (4.10)

∂W (ζ+, V, E)

∂E
+
∂W (ζ−, V, E)

∂E
= ξ . (4.11)

where U is a new constant. The first equation determines ζ+ as a function of ζ−, and the

second equation determines how both of them depend on the ‘time’ variable ξ. Computing

the derivatives of W we find
∫ ζ+ dζ√

P5(ζ)
+

∫ ζ− dζ√
P5(ζ)

= 2U , (4.12)

∫ ζ+ ζ dζ√
P5(ζ)

+

∫ ζ− ζ dζ√
P5(ζ)

= − 2ξ

1− β2
, (4.13)

where we defined the quintic polynomial P5(ζ) as:

P5(ζ) =
∏

a

(ζ − ω2
a)

{
V −

∑

a

∏

b6=a
(ω2
a − ω2

b )
C2
a

ζ − ω2
a

+

[
κ2(1 + β2)−

∑

a

ω2
a

]
ζ − ζ2

}
(4.14)

Although one could use (4.12), (4.13) to find the shape of the generic string solution, here

we are interested in particular solutions describing strings with one infinite momentum (or

“infinitely long” strings). Such solutions arise when ζ± can reach its extremal values ω2
2,3.

For this to happen we choose V and E (or κ) such that P5(ζ) has a double zero at ζ = ω2
2

and a double zero at ζ = ω2
3. For this we need to choose

C2 = 0, C3 = 0, κ2(1 + β2) = ω2
1 + C2

1 , V = −ω2
2ω

2
3 − C2

1 (ω2
1 − ω2

2 − ω2
3) . (4.15)

As in the 2-spin case, if we use the conformal constraints this implies

ω1 = κ, β = −C1

ω1
. (4.16)

The equations to solve then reduce to
∫ ζ+

ζ̄

dζ

(ζ − ω2
2)(ζ − ω2

3)
√
ζ̄ − ζ

+

∫ ζ−

ζ̄−

dζ

(ζ − ω2
2)(ζ − ω2

3)
√
ζ̄ − ζ

= 0 (4.17)

∫ ζ+

ζ̄

ζ dζ

(ζ − ω2
2)(ζ − ω2

3)
√
ζ̄ − ζ

+

∫ ζ−

ζ̄−

ζ dζ

(ζ − ω2
2)(ζ − ω2

3)
√
ζ̄ − ζ

= − 2ξ

1− β2
, (4.18)
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which can be integrated by elementary methods. Here ζ̄ =
√
ω2

1 − C2
1 (ω2

2 < ζ̄ < ω2
1)5 is

the maximum value of ζ+ and we assume that at such point ζ− has an arbitrary value ζ̄−
(ω2

2 < ζ̄− < ω2
3). Changing ζ̄− changes the integral by a constant and that allowed us to

absorb U in the definition of ζ̄−.

The above equations can be simplified to

∫ ζ+

ζ̄

dζ

(ζ − ω2
3)
√
ζ̄ − ζ

+

∫ ζ−

ζ̄−

dζ

(ζ − ω2
3)
√
ζ̄ − ζ

= − 2ξ

1− β2
, (4.19)

∫ ζ+

ζ̄

dζ

(ζ − ω2
2)
√
ζ̄ − ζ

+

∫ ζ−

ζ̄−

dζ

(ζ − ω2
2)
√
ζ̄ − ζ

= − 2ξ

1− β2
. (4.20)

We find then

∫ ζ+

ζ̄

dζ

(ζ − ω2
2)
√
ζ̄ − ζ

=
2√

ζ̄ − ω2
2

arctanh

√
ζ̄ − ζ+√
ζ̄ − ω2

2

(4.21)

∫ ζ−

ζ̄−

dζ

(ζ − ω2
2)
√
ζ̄ − ζ

=
2√

ζ̄ − ω2
2

[
arctanh

√
ζ̄ − ω2

2√
ζ̄ − ζ−

− arctanh

√
ζ̄ − ω2

2√
ζ̄ − ζ̄−

]
,

which are slightly different because ζ+ > ω2
2 and ζ− < ω2

2 (also, the limits of integration

are different). In a similar way we can do the integrals in eq. (4.19) taking into account

that ζ± > ω2
3 . Using these results we find the following algebraic equations

s+s− + s2
2

s+ + s−
= s2A2(ξ) (4.22)

s+s− + s2
3

s+ + s−
= s3A3(ξ) (4.23)

where we defined (s1 is introduced here for later use)

s1 =
√
w2

1 − ζ̄ , s2,3 =
√
ζ̄ − ω2

2,3, s± =

√
ζ̄ − ζ±, (4.24)

A2(ξ) = tanh

(
− s2ξ

1− β2
+B2

)
, A3(ξ) = coth

(
− s3ξ

1− β2
+B3

)
. (4.25)

Here we defined:

tanhB2 =
s2√
ζ̄ − ζ̄−

, tanhB3 =

√
ζ̄ − ζ̄−
s3

, (4.26)

and ξ is assumed to extend from −∞ to +∞. To go back to the variables ra we note that

r2
a =

(ζ+ − ω2
a)(ζ− − ω2

a)∏
b6=a(ω

2
a − ω2

b )
=

(s2
a − s2

+)(s2
a − s2

−)∏
b6=a(ω

2
a − ω2

b )
=

(s2
a + s+s−)2 − s2

a(s+ + s−)2

∏
b6=a(ω

2
a − ω2

b )
. (4.27)

5We assume that C2
1 < w2

1 −w2
2 since otherwise there is no solution.
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Using that

s+ + s− = − ω2
2 − ω2

3

s3A3(ξ)− s2A2(ξ)
, s+s− = s2s3

s3A2(ξ)− s2A3(ξ)

s3A3(ξ)− s2A2(ξ)
(4.28)

this results in

r2
1 =

[
(ω2

1 − ω2
2)s3A3(ξ)− (ω2

1 − ω2
3)s2A2(ξ)

]2
+ s2

1(ω2
2 − ω2

3)2

(ω2
1 − ω2

2)(ω2
1 − ω2

3)(s3A3(ξ)− s2A2(ξ))2
(4.29)

r2
2 =

(ω2
2 − ω2

3)

(ω2
1 − ω2

2)
s2

2

1−A2
2(ξ)

(s3A3(ξ)− s2A2(ξ))2
(4.30)

r2
3 =

(ω2
2 − ω2

3)

(ω2
1 − ω2

3)
s2

3

A2
3(ξ)− 1

(s3A3(ξ)− s2A2(ξ))2
. (4.31)

Together with (4.25) this gives explicitly ra as simple functions of ξ. It is easy to check

that
∑

a r
2
a = 1 and r2

a ≥ 0 (a = 1, 2, 3).

One can also check directly that the equations of motion for ra following from the

Lagrangian (2.26) are satisfied.6

4.2 Energy and momenta

Since here C2,3 = 0, the angular momenta J2,3 can be computed as

Ja =
T

1− β2

∫ +∞

−∞
ωar

2
a(ξ) dξ, a = 2, 3 (4.32)

Using the explicit expresions for ra(ξ) and the integrals

∫ +∞

−∞

(1− tanh2(x)) dx

[tanh(x)− c coth(cx+ b)]2
=

2

c2 − 1
(4.33)

∫ +∞

−∞

(coth2(cx+ b)− 1) dx

[tanh(x)− c coth(cx+ b)]2
=

2

c(c2 − 1)
(4.34)

we obtain that:

1

T
Ja =

2ωasa
ω2

1 − ω2
a

=
2ωa

ω2
1 − ω2

a

√
ζ̄ − ω2

a, a = 2, 3 (4.35)

The remaining angular momentum J1 follows from the formula (2.45) (remembering that

C2,3 = 0, C1 = −βω1):

E

κ
=
∑

a

Ja
ωa

⇒ ∆ = E − J1 =
ω1

ω2
J2 +

ω1

ω3
J3 (4.36)

Notice that as in the two-spin case both E = κT
∫ +∞
−∞ dξ and J1 diverge for this solution

but their difference ∆ is finite.

6The coordinates ζ± can at this point be ignored and one can work directly with the solution ra(ξ) that

we obtained. As we have shown, ζ± are, however, important to derive the solution.
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Now let us compute µ̂1 that we associate with the momentum of the magnon [17].7

We get

µ̂1 =

∫ +∞

−∞
µ′1dξ =

C1

1− β2

∫ +∞

−∞

1− r2
1

r2
1

dξ (4.37)

where we used the equation for µ1 from section 2 and the relation β = −C1
ω1

. This integral

is convergent since r1 approaches 1 exponentially fast as ξ → ±∞. If we remember that

2

1− β2
dξ =

ζ+dζ+

(ζ+ − ω2
2)(ζ+ − ω2

3)
√
ζ̄ − ζ+

+
ζ−dζ−

(ζ− − ω2
2)(ζ− − ω2

3)
√
ζ̄ − ζ−

(4.38)

0 =
dζ+

(ζ+ − ω2
2)(ζ+ − ω2

3)
√
ζ̄ − ζ+

+
dζ−

(ζ− − ω2
2)(ζ− − ω2

3)
√
ζ̄ − ζ−

(4.39)

we find that, in terms of the variables ζ±,

2

C1
dµ1 =

[
− (ω2

1 − ω2
2)(ω2

1 − ω2
3)

(ζ+ − ω2
1)(ζ+ − ω2

2)(ζ+ − ω2
3)
− ζ+

(ζ+ − ω2
2)(ζ+ − ω2

3)

]
dζ+√
ζ̄ − ζ+

+

[
− (ω2

1 − ω2
2)(ω2

1 − ω2
3)

(ζ− − ω2
1)(ζ− − ω2

2)(ζ− − ω2
3)
− ζ−

(ζ− − ω2
2)(ζ− − ω2

3)

]
dζ−√
ζ̄ − ζ−

= − dζ+

(ζ+ − ω2
1)
√
ζ̄ − ζ+

− dζ−
(ζ− − ω2

1)
√
ζ̄ − ζ−

. (4.40)

Integrating over ζ± we obtain:

µ1 = − arctan

√
ζ̄ − ζ+√
ω2

1 − ζ̄
− arctan

√
ζ̄ − ζ−√
ω2

1 − ζ̄
(4.41)

This can be written also as

tanµ1 = −s1(s2 + s3)

s2
1 + s+s−

(4.42)

which, through (4.28) gives µ1 explicitly as a function of ξ. Although this was derived for

a piece of the string it can again be extended to all values −∞ < ξ < ∞. In particular,

since from (4.28) we learn that (s+s−)(±∞) = s2s3 and (s+ + s−)(±∞) = ±ω2
2−ω2

3
s3−s2 , we

find that

µ̂1 = µ1(+∞)− µ1(−∞) = 2 arctan
s1(s2 + s3)

s2
1 + s2s3

, (4.43)

which can be written in the form:

µ̂1

2
= arctan

s2

s1
+ arctan

s3

s1
. (4.44)

Defining two angles φ2,3 by (below a = 2, 3)

tanφa =
sa
s1
, 0 < φa <

π

2
, (4.45)

7Note that since C2,3 = 0, one finds that µ′2,3 are constant and therefore (∆µ)2,3 =
R∞
−∞ µ′2,3 are infinite.
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and another two γ2,3 by

ωa = ω1 sin γa , 0 < γa <
π

2
, (4.46)

we get

sa =
√
ω2

1 − ω2
a sinφa, Ja = 2T tan γa sinφa, (4.47)

Then

∆ =
J2

sinγ2
+

J3

sin γ3
= 2T

(
sinφ2

cos γ2
+

sinφ3

cos γ3

)
. (4.48)

If we eliminate the variables γa we obtain the final result

∆ =

√
J2

2 +
λ

π2
sin2 φ2 +

√
J2

3 +
λ

π2
sin2 φ3 , µ̂1 = 2(φ2 + φ3) , (4.49)

where we used that T =
√
λ

2π . The sum of φ2, φ3 is fixed but one might wonder if they can

otherwise be chosen arbitrarily. This is not the case if we keep J2,3 (or ω2,3) fixed. Indeed,

we have
1

cos2 φa
= 1 + tanφ2

a = 1 +
s2
a

s2
1

= cos2 γa
ω2

1

s2
1

, a = 2, 3 , (4.50)

and so

s1 sinφ2 = ω1 cos γa cosφa sinφ2 , s1 sinφ3 = ω1 cos γa cosφa sinφ3 . (4.51)

If both φ2 and φ3 are non-vanishing, this implies the constraint

cos γ2 cosφ2 = cos γ3 cosφ3 (4.52)

We can eliminate γa in favor of Ja obtaining the relation:

sin(2φ2)√
J2

2 + λ
π2 sin2 φ2

=
sin(2φ3)√

J2
3 + λ

π2 sin2 φ3

. (4.53)

When either φ2 or φ3 vanishes, there is no constraint.

Notice that the constraint (4.53) can also be written as

∂∆2

∂φ2
=
∂∆3

∂φ3
, ∆a ≡

√
J2
a +

λ

π2
sin2 φa, a = 2, 3 . (4.54)

Anticipating the result of the next section, we are going to interpret this solution as repre-

senting two magnons with momenta pa = 2φa and energies ∆a. The classical configuration

then describes two wave packets each with group velocity va = 1
2
∂∆a
∂φa

. The condition (4.54)

means that both wave packets move with the same speed and therefore describe a rigid

configuration. Since our NR ansatz did not include non-trivial time dependence (apart

from linear combination of τ with σ and angular frequency phases) it can only describe

such rigid configurations and not those where the magnons move with respect to each other.

Finally, we can plot the form of the solutions to understand their behavior. In fig-

ures 1a, 1b, 1c, we present the solutions ra(ξ) for different values of the parameters. Notice
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Figure 1: (1a): The radial functions r2
a(ξ) for ω2

1 = 1, ω2
2 = 0.6, ω2

3 = 0.2, ζ̄ = 0.8, ζ̄−−0.2 = 10−9.

The curve that goes to 1 at ξ = ±∞ is r1, while r2, r3 are the gray and black curves going to

0 at ξ = ±∞. The bumps represent a concentration of J2 and J3 respectively. (1b): Same but

with ζ̄− = 0.4. We see that the bumps moved with respect to each other. (1c): Same but with

ζ̄− − 0.6 = −10−5. Comparing to (1a), we see that the positions of the bumps interchanged. This

occurs as the parameter ζ̄− varies between its limits: ω2
3 < ζ̄− < ω2

2 .

that r2,3 are the densities of J2,3 momenta, so the bumps represent the positions of the

magnons. It can be seen from these figures that the magnons can be separated as much as

we want by tuning a parameter. Besides the parameters ω2
a and Ca there is a parameter ζ̄−

that can be loosely associated with the distance between the magnons. Notice that none

of the conserved quantities depend on ζ̄−.

4.3 Special cases

Let us consider first the particular case J3 = 0, φ3 = 0. As was pointed out above, in the

case of φ3 = 0 there is no constraint. Now the string moves in the S3 part of S5 and the
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energy formula (4.49) reduces to the 2-spin one [19, 21]

E − J1 =

√
J2

2 +
λ

π2
sin2 φ2

and reproduced in section 3 using the present formalism.

Another interesting particular case is J3 = 0, φ3 6= 0. Here the string moves on S5:

all r1,2,3 are non-trivial. The solution has w3 = 0 or equivalently γ3 = 0. Now the energy

formula (4.49) reads

E − J1 =

√
J2

2 +
λ

π2
sin2 φ2 +

√
λ

π
sinφ3 (4.55)

The last term represents the energy increase due to the stretching in r3 or φ3. The stretching

is not a free parameter but is determined by the constraint cosφ3 = cos γ2 cosφ2.

In [17] it was pointed out that a single-spin spinning folded string rotating in S 2

considered in [4], in the limit when the ends approach the equator, can be interpreted as a

superposition of two magnons. The analog solution for S5 can be obtained from our three

spin solution by setting β = 0 and C1 = 0. Then s1 = 0, φ2 = φ3 = π
2 , and we get the

following energy formula:

E − J1 =

√
J2

2 +
λ

π2
+

√
J2

3 +
λ

π2
(4.56)

Note that the constraint (4.53) between J2 and J3 is absent, because φ2 = φ3 = π
2 already

solves (4.52). In the particular case J2 = J3 = 0, one recovers the expression for the energy

of two giant magnons

E − J1 = 2

√
λ

π
(4.57)

4.4 Large J1 limit of 3-spin circular solution

Finally, it is also interesting to compare the energy of the above three spin solution with

the large J1 limit of the rigid circular solution with three angular momenta J1, J2, J3 found

in [12]. A similar limit for the two-spin case was considered in [21]. The energy formula is

given by

E2 = 2

3∑

a

√
λm2

a + ν2 Ja − ν2 ,
∑

a

maJa = 0 , (4.58)

where ν is determined from ∑

a

Ja√
λm2

a + ν2
= 1 (4.59)

To take the limit of J1 large at fixed J2, J3, we write m2 = n2m, J3 = n3m, m1 = −n1,

and take the limit of large m with na fixed. The resulting formula is

E − J1 =
1

J1

(
J2

√
λm2

2 + J2
1 + J3

√
λm2

3 + J2
1

)
(4.60)

with the relation J1m1 + J2m2 + J3m3 = 0. In the particular J3 = 0 case, it reduces to the

expression found in [21]. Since we are taking the limit of large J1 and large m2, m3 with
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fixed ratio, maJa
J1
≡ ka, the energy formula can be more conveniently written as

E − J1 =
√
J2

2 + λk2
2 +

√
J2

3 + λk2
3 , (4.61)

with m1 + k2 + k3 = 0. The structure is thus similar to the above energy formula for the

three-spin magnon.

One can also consider the same limit for the general circular solution with spins also on

the AdS5 space, i.e. with quantum numbers (S1, S2, J1, J2, J3) and windings (q1, q2,m1,m2,

m3) (this will generalize the discussion in [21] where the case of (S1, J1) solution was

considered). The energy formula is determined from the equations [12]

3∑

a=1

Ja√
λm2

a + ν2
= 1 ,

E

κ
−

2∑

i=1

Si√
λq2

i + κ2
= 1 , (4.62)

2κE − 2

2∑

i=1

√
λq2

i + κ2 Si − κ2 = 2

3∑

a=1

√
λm2

a + ν2 Ja − ν2 , (4.63)

2∑

i=1

qiSi +

3∑

a=1

maJa = 0 . (4.64)

To take the large J1, we make a similar rescaling of the variables as above and, in addition,

we define qi = mpi. Then we expand at large m with the new variables fixed. We find the

formula

E − J1 =
1

J1

(
J2

√
λm2

2 + J2
1 + J3

√
λm2

3 + J2
1 + S1

√
λq2

1 + J2
1 + S2

√
λq2

2 + J2
1

)
(4.65)

or

E − J1 =
√
J2

2 + λk2
2 +

√
J2

3 + λk2
3 +

√
S2

1 + λl21 +
√
S2

2 + λl22 , (4.66)

m1 + k2 + k3 + l1 + l2 = 0 . (4.67)

with ka ≡ maJa
J1

, li ≡ qiSi
J1

. The expression may be interpreted as the energy of a superpo-

sition of four bound states of magnons.

5. Gauge theory (spin chain) interpretation of rotating giant magnons

In the limit λ → 0 the theory in question is better described in terms of a perturbative

conformal field theory (N = 4 SYM). The string corresponds to a field theory operator

whose conformal dimension equals the energy of the string. As was shown in [6] in the

present scalar operator context (and in [25] in the context of QCD), a useful description of

the field theory operators at weak coupling is in terms of spin chains. In the three spin case

we expect the perturbative description to correspond to an SU(3) spin chain corresponding

to operators made out of the fields X = Φ1 + iΦ2, Y = Φ3 + iΦ4 Z = Φ5 + iΦ6.8

8Since we are interested in the limit J1 → ∞ while keeping J2,3 finite, we are effectively breaking the

symmetry from SU(3) to

U(1) × SU(2). The SU(2) subgroup rotates the fields Y and Z and can be used to classify the states.
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Before going into the details of the spin chain description, let us note that a naive

extrapolation of the results we already have from the string side would give, in the λ→ 0

limit:

∆ = J2 + J3 +
λ

2π2J2
sin2 φ2 +

λ

2π2J3
sin2 φ3 (5.1)

J2

sin(2φ2)
=

J3

sin(2φ3)
. (5.2)

Setting φa = 2pa, this expression is the same as the energy of two magnons of momenta

p2 and p3, each being a bound state of, respectively, J2 and J3 elementary excitations or

“particles”. The “particle” making up the magnon with momentum p2 is actually the field

Y and the magnon with momentum p3 — the field Z (each inserted into the infinite chain

of fields X). The operator in question should then have J2 of Y ’s, J3 of Z’s and an infinite

number of X’s.9

Given that the system is integrable, we expect that both the energies and the momenta

of the two magnons superpose,

p = p2 + p3 ⇒ p =
1

2
µ̂1 , (5.3)

i.e. we also find the relation p = 1
2 µ̂1 for the total momentum of the configuration [17].

The classical string configurations should actually represent a coherent superposition

of magnons localized in two wave packets. The condition (4.54) or its λ → 0 limit (5.2),

means that the wave packets move at the same speed and therefore the configuration is

rigid. This is because the velocity of the wave packet is the group velocity v = ∂∆(p)
∂p .

Thus at λ→ 0 we reproduce the main features of the three spin magnon configuration

in a straightforward manner. The result for all λ of course follows if we assume that the

exact all-loop magnon energy is given as in [18, 19] by ∆ =
√
J2 + λ

π2 sin2 p
2 and again use

superposition and the condition of equal velocity.

5.1 Bethe ansatz wave function

We want to construct the wave function of two magnons, each of them being a bound

state of several excitations. Again, we start with an infinite chain of sites with fields X in

which we replace J2 of X’s by Y ’s and J3 of X’s by Z’s. The one-loop SU(3) spin chain

Hamiltonian, whose spectrum describes the possible configurations, is given by [6]

H =
λ

8π2

∑

l

(1− Pl,l+1) , (5.4)

where Pl,l+1 permutes the sites l and l + 1.

Here we are interested in the case of an infinite spin chain with a finite number of

particles (excitations). The case of a finite density of particles, namely the thermodynamic

limit in the SU(3) sector, was considered in [29]. This was done to interpret, in the field

9Note that in ∆ we replace J2 + J3 of X’s by J2 of Y ’s and J3 of Z’s and therefore ∆ = E − J1 has a

zero order contribution of J2 + J3 which is the variation in J1.
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theory, the string solutions found in [5, 12]. In that case one can also use coherent state

methods to compare directly the actions for relevant low-energy modes on the string and

the spin chain side [26, 30].

We shall follow closely the ideas in [27] and [28]. It is important to give a detailed

description of the problem in order to get a precise idea of which states exist, so that we

can identify the string solution found above with an operator on the field theory side. To

start with the Bethe ansatz let us assume that we add N = J2 +J3 distinguishable particles

and later symmetrize as appropriate. The configurations are divided into sectors labeled

by a permutation Q = (Q1, . . . , QN ), where Qi are integers from 1 to N which are all

different. Q1 is the left-most particle, Q2 the next one and QN the right-most one. For

example, Q = (3, 1, 2) means that we put the third particle on the left, the first one in

the middle and the second one on the right (recall that they are distinguishable for now).

Then we take N momenta ki all different and assign them to each particle according to

another permutation P = (P1, . . . , PN ). This means that kP1 is the momentum of the first

particle and so on. The Bethe ansatz gives a wave function in each sector labeled by Q as:

ψQ(x1, . . . , xN ) =
∑

P

A(Q|P ) ei(kP1
xQ1

+...+kPN xQN ) , (5.5)

where xn is an integer which describes the position of the n-th particle. Notice that

xQ1 < . . . < xQN . There are (N !)2 coefficients A(Q|P ) that we need to determine from the

condition that ψ is an eigenstate of the above Hamiltonian.

When the particles are far apart, applying H, we find that the energy is given by

E =
λ

2π2

N∑

l=1

sin2 kl
2
. (5.6)

When two particles, e.g., Ql and Ql+1, come together (meaning that xQl = xQl+1
± 1) the

eigenstate condition determines that

eikPl+1A(Q̃|P ) + eikPlA(Q̃|P ′)
= −

(
eikPl+1 − eikPleikPl+1 − 1

)
A(Q|P )−

(
eikPl − eikPleikPl+1 − 1

)
A(Q|P ′) , (5.7)

e
ikPl+1A(Q|P ′) + eikPlA(Q|P ′)

= −
(
eikPl+1 − eikPleikPl+1 − 1

)
A(Q̃|P )−

(
eikPl − eikPleikPl+1 − 1

)
A(Q̃|P ′) , (5.8)

where Q̃ = (Q1, . . . , Ql+1, Ql, . . . , QN ), namely, the same as Q but with two particles

interchanged. The same applies to P ′ = (P1, . . . , Pl+1, Pl, . . . , QN ) but now we interchange

the momenta we assign to the two particles. We can solve for A(Q|P ′) as

A(Q|P ′) = αPl,Pl+1
A(Q|P ) + βPl,Pl+1

A(Q̃|P ), αij =
i

ui − uj + i
, βij = αij − 1 , (5.9)

where we defined

ui =
1

2
cot

ki
2
. (5.10)
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The way to solve these equations is to assume first that we know A(Q,1) (where 1 =

(1, 2, . . . , N) is the identity permutation) and compute A(Q|P ) for all P . Notice that in

principle we only know how to do permutations that interchange two consecutive momenta,

but it is easy to see that in this way we can get to an arbitrary permutation. If we define

a set of N ! vectors ξP as the columns of A (i.e. (ξP )Q = A(Q|P ))10 we get

ξP ′ =
(
αPl,Pl+1

+ βPl,Pl+1
P̂l,l+1

)
ξP = Yl,l+1ξP , (5.11)

where P̂l,l+1 is an operator that interchanges the components of ξP such that (P̂l,l+1ξP )Q =

(ξP )Q̃.

As was mentioned above, given ξ1 we can construct ξP for all P . However, this

construction works provided certain compatibility conditions hold. One is that if we do a

permutation twice we should get the identity (P ′)′ = P . The other stems from the fact

that, for example, we can interchange the first and third momenta in two different ways

which have to agree: Y13 = Y12Y23Y12 = Y23Y12Y23. These are the Yang-Baxter conditions

that here read

α21α12 + β12β21 = 1 (5.12)

β21α12 + α21β12 = 0 (5.13)

α13α23β12 + α13α12β23 − α12α23β13 = 0 (5.14)

and can be easily checked.

If we want a scattering state, we are done: we have to specify an arbitrary ξ1 and that

is it. If some of the particles are indistinguishable we need to impose symmetry conditions

on ξ1. For example, if they are all of the same type, we have to take all components of ξ1

equal: (ξ1)Q = 1 for all Q and so on.

If we want the state to be that of a periodic chain then we have to impose periodicity

conditions which are non-trivial and require what amounts to another Bethe ansatz for the

components of ξ1. This is the nested Bethe ansatz that results in the Bethe equations that,

as we already mentioned were discussed in this context in [29].

If we want to find bound states on an infinite chain, which is our main interest here,

we have to impose certain conditions on ξ1 that we are going to study below. Before doing

that in general we are going to work out the examples of two and three particles.

5.2 Two particle states

If there are two particles we have two permutations that we can call 1 = (12) and 2 = (21).

Therefore, there are two vectors ξ1, ξ2 of two components each. We get:

ξ1 =

(
a

b

)
, P̂12ξ1 =

(
b

a

)
⇒ ξ2 =

(
α12a+ β12b

β12a+ α12b

)
. (5.15)

10It is conventional to call this vector ξP . Of course it bears no relation to the world-sheet coordinate ξ

we used in previous sections.
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Suppose now that Im(k1) < 0 and Im(k2) > 0. We get a bound state if we assign k1 to

the particle to the left and k2 to the right. If we interchange the momenta we get a wave

function that diverges at ±∞. Therefore, we should have ξ2 = 0. This gives equations

for a and b that are compatible only if α12 ± β12 = 0. Since α12 − β12 = 1 we can only

have α12 + β12 = 0. Then a = b, namely, there is a bound state in the symmetric sector.

Furthermore,

α12 + β12 = 0 ⇒ u1 − u2 = i (5.16)

Since the total momentum and the energy are real, we need k1 = k∗2 which implies u1 = u∗2.

The solution is

u1 = û+
i

2
, u2 = û− i

2
. (5.17)

The total momentum and energy are

p = k1 + k2 = 2 Re(k1) (5.18)

E =
λ

2π2
sin2 k1

2
+

λ

2π2
sin2 k2

2
=

λ

4π2
sin2 p

2
. (5.19)

The (not normalized) wave function is

|ψ〉(y1, y2) = [|Y Z〉+ |ZY 〉] eiRe(k1)(y1+y2)e−Im(k1)(y1−y2) , (5.20)

where we defined yi = xQi so that y1 is the position of the particle at the left and y2 the

position of that at the right (i.e. y1 < y2, also Im(k1) < 0). Also, we used a ket notation

for the vector ξ. The state |Y Z〉 means that the particle on the left is a Y and that on the

right a Z. The opposite applies to |ZY 〉. If both particles are Y then we simply get

|ψ〉(y1, y2) = |Y Y 〉 eiRe(k1)(y1+y2)e−Im(k1)(y2−y1) . (5.21)

5.3 Three particle states

Now there are six permutations that we can label as:

1 = (123), 2 = (132), 3 = (312), 4 = (213), 5 = (231), 6 = (321) (5.22)

Thus, ξP is a six-vector. Recall that the different components of ξP correspond to different

orderings of the particles and the different vectors ξP to different momenta assignments.

On ξ1 the permutations act as:

ξ1 =




a

b

c

d

e

f



, P̂12ξ1 =




d

c

b

a

f

e



, P̂23ξ1 =




b

a

f

e

d

c




(5.23)

This follows, for example, from the fact that P̂12 interchanges 1 ↔ 4, 2 ↔ 3, 5 ↔ 6 and

similarly for P̂23.
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For a bound state with real energy and momentum, let us consider Im(k1) < 0,

Im(k2) = 0, −Im(k1) = Im(k3) > 0. It is clear that we can have a bound state only if

ξP = 0 for P 6= 1, i.e. the only possibility is that k1 goes to the left, k2 in the middle and

k3 to the right. For this we only need to require that

ξ2 =
[
α23 + β23P̂23

]
ξ1 = 0 , ξ4 =

[
α12 + β12P̂12

]
ξ1 = 0 . (5.24)

There is a non-vanishing solution for ξ1 only if α12 = −β12 and α23 = −β23 which is

equivalent to

u2 − u3 = u1 − u2 = i ⇒ u1 = û+ i, u2 = û, u3 = û− i (û is real) (5.25)

Given those values of momenta we see that the solution is such that a = b = c = d = e = f ,

namely it is in the totally symmetric sector. The energy and momentum are:

p = k1 + k2 + k3 ⇒ tan
p

2
=

3

2û
, (5.26)

E =
λ

2π2

3∑

l=1

sin2 kl
2

=
λ

6π2
sin2 p

2
(5.27)

If there are two particles of type Z and one of type Y the wave function is

|ψ〉(y1, y2, y3) = [|Y ZZ〉+ |ZY Z〉+ |ZZY 〉] ei(k1y1+k2y2+k3y3) (5.28)

A natural question is if there are states (in the other symmetry sector) which describe

scattering of a single particle and a two-particle bound state. For that we choose Im(k1) =

0, Im(k2) < 0, Im(k3) > 0 and consider permutations such that k2 is always to the left

of k3 so that the wave function does not diverge. It is clear that we only have to kill ξ2.

Namely, α23 = −β23 = 1
2 , u2−u3 = i. If the reference configuration is |Y ZZ〉, then we find

from the symmetry that a = b, c = d and e = f since they multiply the same configuration.

This means that there are three independent states that we can choose to be

|1〉 =

√
2

3

[
|Y Y Z〉 − 1

2 |ZY Z〉 − 1
2 |ZZY 〉

]
= |12 1

2〉 (5.29)

|2〉 =
1√
2

[|ZY Z〉 − |ZZY 〉] = | 12 1
2〉
′

(5.30)

|3〉 =
1√
3

[|Y Y Z〉+ |ZY Z〉+ |ZZY 〉] = | 32 1
2〉 (5.31)

We used also an alternative notation in terms of spin 1
2 representations by identifying Y

with spin down and Z with spin up. The last state |3〉 is in the symmetric sector and we

ignore it. If we apply the condition ξ2 = 0, we need again u3−u2 = i but also c = f which

means that the state is ξ1 = |1〉. The other non-vanishing vectors are ξ4 and ξ5 which can

be computed from

ξ4 =
[
α12 + β12P̂12

]
ξ1, ξ5 =

[
α13 + β13P̂23

]
ξ4 (5.32)
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Finally, we obtain the wave function

|ψ〉(y1, y2, y3) =

√
2

3

[
|Y ZZ〉 − 1

2
(|ZY Z〉+ |ZZY 〉)

]
ei(k1y1+k2y2+k3y3)

−
√

2

3
β12

[
|ZZY 〉 − 1

2
(|Y ZZ〉+ |ZY Z〉)

]
ei(k2y1+k3y2+k1y3)

−
√

2

3

[
|ZY Z〉 − 1

2
(|Y ZZ〉+ |ZZY 〉)

]
ei(k2y1+k1y2+k3y3)

−
√

2

3
α12

[
|ZZY 〉 − 1

2
(|Y ZZ〉+ |ZY Z〉)

]
ei(k2y1+k1y2+k3y3) (5.33)

We see that if y1 → −∞ only the first line survives (since Im(k2) < 0) and it precisely

describes a particle on the left and two symmetrized particles on the right, as we expect

for a particle moving away from a two particle bound state. Similarly, if y3 →∞ only the

second line survives describing a bound state to the left and a single particle to the right.

It is clear also that we do not see any bound state (of the three particles) in this sector.

This suggests that the string solution that we are considering should correspond to a state

of two magnons which are not bound to each other. To describe such a state we shall first

review the construction that gives one bound state and then extend it to two magnon case.

5.4 J-particle bound state

The bound state of J particles is in the symmetric sector and was found already by Bethe

in his original paper [31]. Here we review briefly this construction since these bound states

are the field theory analog of the giant magnon with an extra angular momentum [18, 21].

Again, we choose the momenta such that only ξ1 6= 0. For this to happen permuting any

successive momenta should give zero, which implies that uj+1−uj = i and all components

of ξ1 are equal, namely the symmetric sector. Again, taking into account that the energy

and momenta should be real, we obtain:

uj = û− J − 1

2
i+ j i, j = 0, . . . , J − 1 , (û is real). (5.34)

Using that

uj =
1

2
cot

kj
2

⇒ eikj =
uj + i

2

uj − i
2

(5.35)

and defining

aj = uj −
i

2
= û− J

2
i+ j i (5.36)

we have for the total momentum

eip = ei
PJ−1
j=0 kj =

J−1∏

j=0

uj + i
2

uj − i
2

=
J−1∏

j=0

aj+1

aj
=
aJ
a0

=
û+ J

2 i

û− J
2 i
, (5.37)

Thus

tan
p

2
= tanφ =

J

2û
, (5.38)
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where we used the notation φ = p
2 as in the previous sections. This exhibits the fact that,

in the u-plane, the angle φ has a simple interpretation, as illustrated in figure 2, where two

magnons are shown.

The resulting expression for the energy is

E =
λ

2π2

J−1∑

j=0

sin2 kj
2

=
λ

8π2

J−1∑

j=0

(
2− aj+1

aj
− aj
aj+1

)
(5.39)

=
λ

8π2

(
2− a1

a0
− aJ−1

aJ

)
=

λ

8π2

4J

J2 + 4û2
=

λ

2π2J
sin2 p

2
(5.40)

where we used that

aj−1 − 2aj + aj+1 = 0 ⇒ aj−1 + aj+1

aj
= 2 (5.41)

to simplify the sum. We see that the state is indeed a bound state since the total energy

is less than the energy of J particles of momentum p
J

E =
λ

2π2J
sin2 p

2
≤ λ

2π2
J sin2 p

2J
(5.42)

For p → 0 the binding energy goes to zero; therefore, at small momentum, such bound

states can be ignored.

The relation between Bethe bound states of elementary magnons (“Bethe strings”)

and giant magnons was also pointed out in [21] where it was generalized to all orders in λ

by starting with the asymptotic BDS Bethe ansatz [32].

Another feature is that to construct a semi-classical state we should superpose magnon

states to create a wave packet. As is well known, such wave packets move at the group

velocity given by

v =
∂E

∂p
=

λ

4π2J
sin p (5.43)

Again, there is a nice geometric interpretation. In figure 2 we draw a circle going through

the origin and the points (û, J2 ) and (û,−J
2 ). The center of the circle is at a distance λ

8π2
1
v

from the origin. In the figure both magnons move with the same velocity so that the circles

coincide.

5.5 Two-magnon state

To reproduce the results from the string side we make the simple ansatz that there are two

bound states, one with J2 particles and the other with J3. We take the initial configuration

of momenta as

u1, u2, . . . , uJ2 , ũ1, ũ2, . . . , ũJ3 , (5.44)

where the u’s determine the momenta of the particles in the first bound state and ũ in the

other. We now allow permutations such that the order of the u’s is preserved and the same

for the ũ’s. This still allows for (
J2 + J3

J2

)
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permutations, namely, non-vanishing ξP vectors. It is clear that to satisfy this we only

need to require that permutations of successive u’s or successive ũ’s vanish which give the

standard bound state conditions for u and ũ that we already discussed, namely:

uj = û2−
J2 − 1

2
i+j i, j = 0, . . . , J2−1; ũj = û3−

J3 − 1

2
i+j i, j = 0, . . . , J3−1 .

(5.45)

An example is given in figure 2. The wave function ξ1 has to be such that it is invariant

under permutations of the first J2 particles and the last J3. This is automatically satisfied

if we choose the state |Y . . . Y︸ ︷︷ ︸
J2

Z . . . Z︸ ︷︷ ︸
J3

〉. However, this is not in the sector we want. If we

consider Y to be a spin up and Z to be a spin down we want the state of spin J2−J3 (and

z projection J2−J3). It is clear that the state in question is obtained by symmetrizing the

first J2 components and the last J3 ones such that we get two states with spins J2 and J3.

Then we compose both to total spin J2 − J3. We can therefore express it as

|ξ1〉 =
∑

M2+M3=J2−J3

(
J2 J3 J2 − J3

M2 M3 −M2 −M3

)
|

symmetrized︷ ︸︸ ︷
(Y . . . Y︸ ︷︷ ︸
J2+M2

Z . . . Z︸ ︷︷ ︸
J2−M2

)

symmetrized︷ ︸︸ ︷
(Y . . . Y︸ ︷︷ ︸
J3+M3

Z . . . Z︸ ︷︷ ︸
J3−M3

)〉 (5.46)

where the parenthesis indicate that the state should be symmetrized over the position of

the corresponding Y ’s and Z’s. Also, we used the 3-j (Clebsch-Gordan) coefficients:

(
J2 J3 J2 − J3

M2 M3 −M2 −M3

)
= (−1)J2+M2

[
(2J3)!(2J2 − 2J3)!(J2 +M2)!(J2 −M2)!

(2J2 + 1)!(J3 +M3)!(J3 −M3)!

] 1
2

×
[

(J2 +M2)!(J2 −M2)!

(J2 − J3 +M2 +M3)!(J2 − J3 −M2 −M3)!

] 1
2

(5.47)

This completely characterizes the state. In a similar way, one can compute the other ξP
to write down the complete wave function.

A physical way to describe this state is in terms of its SU(2) quantum numbers, where

SU(2) rotates Y and Z. Under that group, one magnon carries angular momentum J2 and

the other J3. Therefore, their constituent particles are, internally, in a totally symmetric

state. Now, the state of the two magnons can have angular momentum from J2 + J3 to

J2−J3. All these states are possible but we are just interested in the one with spin J2−J3.

Finally, to establish a correspondence with the string theory picture, we need, as

we already discused, to construct a semiclassical (coherent) state. Then we get a rigid

configuration when the group velocities of the wave packets representing the two giant

magnons are equal. We see in figure 2 that the circles drawn for the two magnons coin-

cide.

6. Conclusions

We have studied a generalized ansatz for strings moving in AdS5 × S5 that reduces the

problem of finding solutions to that of solving the Neumann-Rosochatius system. That
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Figure 2: Distribution of momenta in terms of uj = 1
2 cot

kj
2 for the two magnon state. Geomet-

rically, it is interesting that the angles shown are half the momenta of each magnon and also that

the center of the circle is at a distance from the origin equal to the inverse of the group velocity

(which is the same for both magnons so there is only one circle).

system describes an effective particle moving on a sphere in a specific potential. In our

case we had an extra term equivalent to a coupling to a magnetic field. Such term, however,

appeared only in the equations for the angular variables. For the radial coordinates, we

still got the usual NR lagrangian. After solving the NR system, the trajectory of the

particle should be understood as the profile of the string. Such string rotates rigidly in

time according to the ansatz we proposed.

Since the solutions of the Neumann-Rosochatius system are relatively simple to find,

we extended the giant magnon solution to the case of two additional angular momenta.

Although, in principle, the integrability does not guarantee a simple expression for the

conserved string quantities (such as angular momenta), we have found a rather simple re-

sult: the conserved quantities correspond to a superposition of those of two giant magnons,

each carrying one of the two finite angular momenta. However, since the solution turned

out to describe a rigid string we got an extra condition that the group velocity of the two

magnons should be the same. It would be interesting to study other solutions (which will

no longer be described by the NR ansatz) where the two magnons move relatively to each

other.
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In the weak coupling gauge theory limit the description of the two magnons is that of

two bound states in a spin chain that move freely. Here it is trivial to consider the magnons

moving with respect to each other since we can see that they do not interact. The wave

function of such system can be constructed using the Bethe ansatz as we discussed in some

detail.

An interesting point is that, on the string side, using the plots we presented, one can

easily differentiate the two magnons. This suggests that one can directly relate the position

along the spin chain with the position along the string. It should be interesting to establish

a more precise map between the action of the string and that of the spin chain as can be

done at small momentum in the “thermodynamic” limit.

Finally, we should note that the ansatz that we used here can be generalized to the full

AdS5 × S5 case (as in [12]); one can also include some pulsating solutions by interchanging

the σ and τ world-sheet coordinates. It would be interesting to understand these other

solutions and see if there is an analog of the giant magnon solution in those larger sectors.
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Note added. While this paper was in preparation, there appeared two papers [33]

and [34] which also discuss spinning giant magnons on S5. The three-spin solution pre-

sented at the end of [33] corresponds to a special case of our solution with energy given

by (4.56) and having s1 = 0, φ2 = φ3 = π
2 . At the same time, we do not understand the

three-spin solution presented in section 2.2 of [34].11
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